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Abstract 

Antibody complementarity determining regions (CDRs) are loops within antibodies responsible 

for engaging antigens during the immune response and in antibody therapeutics and laboratory 

reagents. Since the 1980s, the conformations of the hypervariable CDRs have been structurally 

classified into a number of “canonical conformations” by Chothia, Lesk, Thornton, and others. In 

2011 (North et al, J Mol Biol. 2011), we produced a quantitative clustering of approximately 300 

structures of each CDR based on their length, a dihedral angle metric, and an affinity propagation 

algorithm. The data have been made available on our PyIgClassify website since 2015 and have 

been widely used in assigning conformational labels to antibodies in new structures and in 

molecular dynamics simulations.  In the years since, it is has become apparent that many of the 

clusters are not “canonical” since they have not grown in size and still contain few sequences. 

Some clusters represent multiple conformations, given the assignment method we have used 

since 2015. Electron density calculations indicate that some clusters are due to misfitting of 

coordinates to electron density. In this work, we have performed a new statistical clustering of 

antibody CDR conformations. We used Electron Density in Atoms (EDIA, Meyder et al., 2017) to 

produce data sets with different levels of electron density validation. Clusters were chosen by 

their presence in high electron density cutoff data sets and with sufficient sequences (≥10) across 

the entire PDB (no EDIA cutoff). About half of the North et al. clusters have been “retired” and 13 

new clusters have been identified. We also include clustering of the H4 and L4 CDRs, otherwise 

known as the “DE loop” which connects strands D and E of the variable domain. The DE loop 

sometimes contacts antigens and affects the structure of neighboring CDR1 and CDR2 loops. 

The current database contains 6,486 PDB antibody entries. The new clustering will be useful in 

the analysis and development of new antibody structure prediction and design algorithms based 

on rapidly emerging techniques in deep learning. The new clustering data are available at 

http://dunbrack2.fccc.edu/PyIgClassify2. 

  

http://dunbrack2.fccc.edu/PyIgClassify2


Introduction 

Antibodies are integral molecules in the process of immunity, and have also found 

important use as reagents in molecular biology research. Antibodies are multi-domain globular 

protein structures that contain constant domains that interact with immune effector cells to incite 

immune response to various antigens (Williams and Barclay 1988, Harpaz and Chothia 1994), 

and variable domains with a V-type immunoglobulin protein fold (Bork et al. 1994), which is the 

structural element responsible for binding antigens in human blood serum and tissue. Typically 

antibody antigen binding sites consist of dimers, where the antibody light chain is paired with the 

antibody heavy chain, but cases exists of heavy chain monomers from camelids (Hamers-

Casterman et al. 1993, Arbabi Ghahroudi et al. 1997), as well as light chain homodimers (Bence-

Jones antibodies) (Wu and Kabat 1970). Antibodies undergo a process called V(D)J 

recombination to form their genetic diversity (Dildrop et al. 1982, Tonegawa 1983). In B-cells, the 

variable (V), diversity (D), and joining (J) gene come together to form the binding region of the 

heavy chain. On the light chain, only V and J regions rearrange to form the binding region. 

Antibodies that successfully bind antigen and elicit an immune response are selected for in B-

cells, and undergo a process called somatic mutation (Tonegawa 1983), selecting for antibodies 

which bind antigen with higher affinity. 

The typical antigen binding site on antibodies consists of six loops, three from each 

variable domain, called the complementarity determining regions or CDRs (Wu and Kabat 1970). 

Two additional loops, adjacent to CDR1 and CDR2, which connect the ‘d’ and ‘e’ strands (and so 

called the “de loop” or “CDR4”), sometimes come in contact with the antigen, especially in the 

presence of somatic insertions in the de loop, predominantly in HIV gp120 antibodies (Kelow et 

al. 2020). Further, we have shown that they affect the structures and cluster choices of CDR1 

and/or CDR2 (Kelow et al. 2020). CDRs 1, 2, and 4 are encoded by the V-region gene segments 

while CDR3 is the product of VDJ or VJ recombination in heavy chain or light chains respectively.  

The canonical six CDRs were first identified by the hypervariable nature of their sequences 

compared to the rest of the variable domain (Kabat and Wu 1971). The first solved antibody 

structures began to shed light about the structural form of the CDRs (Amit et al. 1986, Sheriff et 

al. 1987). Near the end of the 1980s, research primarily from Cyrus Chothia and Arthur Lesk 

deepened our understanding of the structures of the CDRs, and in turn how CDR structure affects 

antibody-antigen binding. This work culminated in the understanding that CDRs take on 

‘canonical’ conformations (Chothia and Lesk 1987, Chothia et al. 1989, Al-Lazikani et al. 1997), 

or frequently observed conformations of the CDR backbone, and gave a categorization of these 

canonical conformations for each CDR. In this observation, Chothia et al. established the first 



structural bioinformatics analysis of the hypervariable region. Even with a limited amount of 

structures they were able to establish the idea that even amongst a diverse number of sequences, 

the conformational landscape of CDR backbones are discrete enough to predict structure from 

sequence by choosing from a set of typically observed conformations with specific residue types 

at certain positions. 

There have been additional research studies aimed at providing classifications of the 

antibody CDRs (Martin and Thornton 1996, Shirai et al. 1996, Oliva et al. 1998, Whitelegg and 

Rees 2004, North et al. 2011, Dunbar et al. 2014, Nikoloudis et al. 2014, Adolf-Bryfogle et al. 

2015, Nowak et al. 2016). Whereas Chothia had dozen of antibodies to observe, as of October 

2022 the PDB contains approximately 6,500 entries containing antibodies. As the number of 

structures has increased, clustering methods have grown more quantitative and sophisticated. In 

1996, Martin and Thornton provided an algorithmic method using a least-squares clustering 

method in dihedral space and a subsequent clustering in root-mean-square deviation (RMSD) 

space using the Cartesian coordinates of the atoms that define the backbone of the CDR (Martin 

and Thornton 1996). This work provided an updated classification of the CDR clusters, but also 

introduced the idea of automation to the CDR classification problem that would prove useful as 

the number of antibody structures continued to rise.  

In 2011, we used an internal dihedral angle clustering metric combined with an affinity 

propagation clustering algorithm (North et al. 2011). We defined the CDRs taking into account 

structural variation of C atom positions after superposition of light-chain and heavy-chain 

variable domains. We defined the CDRs boundaries to be the same positions in light and heavy 

chain domains (with the exception of the C-terminal end of L2, which is 3 residues longer than H2 

to account for some structural variation following L2). After defining the clusters and cluster 

centroids for each length of each CDR available in the PDB, we used a cutoff of 40° for the 

average dihedral angle difference from the centroid of each cluster to assign CDRs in all antibody 

PDB structures to each of these structural families. The average is calculated over  and  for 

the same CDR of the same length for the same cis-trans pattern, e.g. for L3 of length 9 with a cis 

residue at position 7. Our nomenclature is simple, consisting of the CDR, its length, and a cluster 

number based on the size of the cluster (1,2,3, etc. from largest to smallest, at the time of 

clustering in 2011). For example, L1 length clusters were named L1-11-1, L1-11-2, and L1-11-3. 

Clusters with cis peptide bonds identified the cis peptide bond explicitly, e.g. L3-9-cis7-1. Our 

antibody conformational clusters have been made available on our PyIgClassify database website 

(Adolf-Bryfogle et al. 2015), which was last updated in late 2019.  

In 2016, Nowak et al. used a length-independent Cartesian RMSD metric alongside 



hierarchical clustering and Density-based spatial clustering of applications with noise (DBSCAN) 

(Ester et al., 1996) to establish canonical families of length-independent CDR structures (Nowak 

et al. 2016). In 2020, we applied a dihedral metric, electron density validation, and DBSCAN to 

cluster the conformations of CDR4 in the heavy and light chains (“H4” and “L4”) (Kelow et al. 

2020). For the standard length 6 L4 loop, we found four clusters – two consisting of only L4 loops 

from kappa domains, one from only lambda chains, and one mixed kappa/lambda cluster. For 

H4, almost all structures in the PDB have a length 8 conformation from a single cluster (“H4-8-

1”). A small number of germlines have other CDR4 lengths, and we defined clusters H4-6-1, H4-

7-1, and L4-8-1. L4-8-1 is identical in conformation to H4-8-1. 

Many antibody computational design programs have been developed and released (Baran 

et al. 2017, Adolf-Bryfogle et al. 2018, Chowdhury et al. 2018). Our program, 

RosettaAntibodyDesign (Adolf-Bryfogle et al. 2018), uses our clusters to sample CDR 

conformations and sequences for affinity maturation of existing antibodies, taking advantage of 

the sequence and structural variation observed within each of our clusters in our PyIgClassify 

database (Adolf-Bryfogle et al. 2015). Deep learning has overtaken other methods for protein 

structure prediction (Jumper et al. 2021) and design (Ovchinnikov and Huang 2021) and recently 

been applied to antibody structure prediction (Ruffolo et al. 2021, Lee et al. 2022) and design 

(Mason et al. 2021). A contemporary and rigorous understanding of the sequence-structure 

relationships of antibody CDRs from experimental structures will be of value in understanding the 

evolution of antibody specificity and in the development and interpretation of deep learning 

approaches to antibody structure prediction and design. 

The necessity to revisit clustering of CDR conformations has become evident in recent 

years. Since our clustering in 2011, the number of antibody structures in the PDB has grown more 

than sevenfold. In 2011, we implemented B-factor (a generous value of 80), resolution (2.8 Å), 

and conformational energy cutoffs to filter an initial set of ~1300 structures of each CDR down to 

about 300 non-redundant structures for each CDR as input to clustering. However, out of the 72 

non-H3 clusters that we defined, 21 of them still contain fewer than 10 unique sequences, bringing 

doubt on whether they should be termed “canonical clusters.” Also, with a cutoff of 40° for the 

average dihedral angle difference from the median structures, 11 of our clusters contain a majority 

of structures with average dihedral differences of greater than 30° from the median, indicating 

either a poor choice for the median, the mixture of two or more conformational states, or data 

inconsistent with the identification of clusters. Structures at 30° or more away from the centroid 

usually look visually very different from the centroid. The sequence-structure correlation of some 

CDRs is also poor, probably due to structures getting included in a cluster that have mis-modeled 



coordinates, such as peptide flips solved with a bad molecular replacement template. For 

example, in the L3-9-cis7-1 cluster, we find structures with a cis peptide bond at position 7 that 

do not have a proline residue at that position, which is almost certainly related to molecular 

replacement and incorrect modeling. Some clusters also have very similar sequence profiles; in 

some cases a small cluster is very similar in RMSD space and sequence profile to a very large 

cluster but has a peptide flip, which alters the  and  of two consecutive residues by 180° each 

(Hayward 2001) without significantly disturbing the positions of neighboring residues. Finally, as 

we show below, some of the 2011 clusters have poor electron density of the backbone carbonyl 

atom at individual positions, usually indicating that a flipped peptide has been incorrectly modeled. 

With all of these considerations in mind, in this paper we revisit the problem of clustering 

antibody CDR structures and contemplate the definition of “canonical CDR conformations.” We 

have utilized several principles to establish more robust CDR clusters than previous efforts:  

 

1) We have established the clusters based on structures that pass an electron density criterion 

for backbone atoms; for this purpose we use the Electron Density of Individual Atoms (EDIA) 

(Meyder et al. 2017) over the more traditional B-factor and resolution cutoffs, which do not 

always correlate with a high-degree of electron density fit to atomic coordinates. We use 

density-based clustering (DBSCAN) on the high EDIA data (EDIA≥0.7) to define the true 

clusters from noise, some of which are mismodeled; noise structures occur frequently at low 

resolution (average EDIA is about 0.8 at 2.8 Å), or because of unusual sequences or 

engineered mutations, or because of incorrect fitting of electron density, often because of 

molecular replacement from incorrect templates.  

2) We use a maximum dihedral angle metric, which means that the distance between two loop 

structures is the angular distance function used in directional statistics (D=2(1-cos(1-2))) 

(Mardia and Jupp 2000) for the largest dihedral angle different of  over all the residues 

of the loop. This metric clearly separates structures which have peptide flips relative to other 

structures, which can be missed by the average dihedral difference we used previously. 

3) We optimized the DBSCAN parameters by identifying consensus clusters produced by 

DBSCAN over a range of parameters, such that the largest clusters are found without merging 

unrelated conformations (generally with two peaks of density in the Ramachandran map).  

4) To identify likely “canonical” clusters, we established a minimum of 10 unique sequences in 

the DBSCAN clusters run without an EDIA cutoff (in all X-ray or EM structures with resolution 

≤ 3.5 Å), where the clusters are defined in Step 3 but the number of unique sequences comes 

from corresponding clusters calculated over the whole PDB.  



5) We did not cluster CDR lengths (for CDR1, CDR2, CDR4) that do not occur in germline 

variable gene sequences and which arise only through somatic insertion and deletion (e.g. 

H1-10, H1-12, L2-6). Unlike the approach of Nowak et al. (Nowak et al. 2016), we did not 

cluster CDRs in a length-independent manner. Somatic insertions and deletions in CDRs 

occur but are not common, and the utility of clusters with multiple CDR lengths is not clear.  

6) Each cluster at EDIA 0.7 and at 0.0 (no cutoff) had to contain 1% of the chains for that CDR 

length. This was done to remove some very small clusters that represent very little of the PDB. 

7) Some exceptions were made only when these criteria resulted in no clusters for a given CDR 

length (e.g., H2-11-1, H3-5-2, H4-6-1, H4-7-1, L1-8-1, L3-13-2). 

 

In the new clustering, for the H1, H2, L1, L2, and L3, for which we had 72 clusters in 2011, 

while we now have 52 clusters, of which 16 are new and 36 are the same as defined in North et 

al. The total numbers of clusters for each CDR are as follows: H1 (8); H2 (8); H3 (13); H4 (3); L1 

(17); L2 (3); L3 (17); L4 (4), for a total of 73 canonical clusters. 

 

 

Results 

Issues with clustering of North et al. (2011) 

The work is an update of the clustering that we presented in previously  (North et al. 2011). 

Our clustering is widely used to categorize new structures (Teplyakov et al. 2016) and to analyze 

molecular dynamics simulations of antibodies (Fernández-Quintero et al. 2020). Table 1 shows 

cluster membership for each of the 72 non-H3 North cluster in the 2011 paper versus September 

2022 based on a 40 assignment cutoff to the median of each cluster, i.e. using the same method 

to assign CDRs to clusters that we have used in our PyIgClassify database (Adolf-Bryfogle et al. 

2015). Based on the listings in Table 1, many of the clusters that were initially established during 

the North et al. work have not grown substantially in the more than 10 years since publication 

(e.g., H1-13-11, H2-9-2, L1-10-2, L3-11-cis7-1). Additionally, many of the clusters, especially 

clusters with cis-peptide bonds included, are singleton clusters and have not shown any 

membership growth. This is a strong motivating factor to revisit the clustering work to ensure that 

the defined canonical clusters are robust, with each having a significant number of unique 

sequences and solid experimental support. 

In order to build high-confidence datasets to determine conformational families, we used 

the EDIA software from Meyder et al. (Meyder et al. 2017). EDIA calculates the fit of atomic 

coordinates to the local electron density within a sphere surrounding the atom in question. EDIA 



is a rigorous method for determining the fit of atomic coordinates and their local density, and 

determines a cutoff for the EDIA score of 0.8 for which researchers should take particular caution 

in considering the structures that those atoms represent. EDIA is highly dependent on resolution 

with high-resolution structures (<1.5 Å) having average EDIA scores of about 1.0 for backbone 

atoms, while low resolution structures around 2.6 Å have an average minimum backbone EDIA 

score per residue of around 0.8 (Figure 1). Since the distribution of resolution across the members 

of different CDR clusters may differ, thus affecting the average at each position, it is variation of 

the average across the residues in one cluster that may be indicative of poor fitting of electron 

density at one or more residues. In Figure 2, in the left column we show several North CDR 

clusters which have generally uniform mean values of EDIA across the length of each CDR. In 

the right column in Figure 2, we show examples of North clusters with fluctuating EDIA mean 

values for the same CDR lengths shown in the left column. While EDIA is strongly dependent on 

resolution, some clusters have individual residues that have lower average EDIA scores than the 

rest of the CDR, indicating potential misfitting of these coordinates. For example, H1-13-2 has 

lower EDIA values at positions 3 and 4 compared to the remaining residues in the CDR, while the 

residues in the much larger cluster, H1-13-1, has consistent EDIA distributions across the length 

of the CDR. The structure of H1-13-2 is very similar to that of H1-13-1, except at positions 3 and 

4 (marked with red arrows in Figure 1), where H1-13-2 (Ramachandran string BBAABBAAABBBB) 

has a “peptide flip” from the structure of H1-13-1 (Ramachandran string BBBLBBAAABBBB). In a 

peptide flip between two structures, the  of residue N and  of residue N+1 of one structure both 

differ by ~180° from the same values in the other structure (Hayward 2001), displacing the oxygen 

atom of residue N by about 3 Å. So for H1-13-1 to H1-13-2 there is a flip of “BL” to “AA,” which is 

the most common peptide flip transition in loop structures (first residue, B→A is a 180° change in 

; second residue, L→A is a 180° change in ). Peptide flips also occur between clusters H2-10-

4 (BBBBLLABBB, correctly modeled) and H2-10-7 (BBBBEAABBB, incorrectly modeled), and 

between L3-8-1 (BBAABEBB) and L3-8-2 (BBABEBBB). Here again these are peptide flips: LL→EA 

is a 180° change in  in the first position (L→E) and a 180° change in  at second position (L→A); 

AB→BE is a 180° change in  in the first position (A→B) and a 180° change in  at second 

position (B→E). A comparison of H1-13-1 and H1-13-2 structures showing the poor electron 

density at these residues in H1-13-2 is shown in Figure 3. 

 

Clusters from all EDIA cutoff datasets 

In this work, we incorporate the EDIA score into our structure quality assessment by 

generating multiple datasets, where atoms for a chosen all backbone atoms of a CDR must meet 



a particular minimum EDIA score cutoff in order to be considered in the clustering set for that 

particular CDR-length. Specifically, we generated data sets of X-ray structures with EDIA cutoffs 

of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, and a tenth data set consisting of all CDR X-ray 

and EM structures in the PDB with resolution ≤ 3.5 Å (“EDIA=0.0”, i.e., no cutoff). For the EDIA 

cutoff datasets, only X-ray structures that had deposited structure factor files in the PDB were 

included in the analysis. For the PDB-wide analysis (EDIA=0.0), we included structures that did 

not have structure factor files. Table 2 shows the number of structures at each EDIA cutoff. Since 

EDIA is dependent on resolution and the average backbone atom in a 2.6 Å structure has an 

EDIA of 0.8 (Figure 1), there is a steep decline in the amount of data at EDIA values above 0.6. 

We work through an example of CDR-length L3-8 to help illustrate the data. The clustering 

with DBSCAN for L3-8 at different EDIA cutoffs is shown in Figure 4. As the EDIA cutoff increases, 

the number of clusters decreases. Clusters that arise in the calculations on different EDIA data 

sets are compared using a Simpson index metric (see Methods) that determines whether there is 

significant overlap. Typically, the clusters at higher EDIA cutoffs are subsets of clusters from the 

larger data sets created at lower EDIA cutoffs. An exact subset has a Simpson index of 1.0. The 

original North cluster L3-8-2 disappears at EDIA above 0.5 and above. The new clusters, L3-8-3 

and L3-8-4, are stable until EDIA values of 0.8 and 0.7 respectively. The EDIA distributions for 

the 0.0 cutoff are shown in Figure 5. While the differences are not dramatic, L3-8-2 has lower 

EDIA values and a larger variance at position 4. The Ramachandran plots show that L3-8-2 is a 

peptide flip (BA → AL) of the (new) cluster L3-8-4 at positions 4-5.  

After examination of the data for the clusters of all CDR lengths, we chose rules designed 

to identify “canonical clusters” – those with enough structures with sufficient electron densities 

and enough sequences across the PDB. The cutoffs are somewhat arbitrary but seem reasonable 

in view of the data. The criteria are as follows: 

 

1. There must be a cluster at EDIA cutoff as high as 0.7 or higher 

2. The clusters at EDIA of 0.0 and at 0.7 must contain at least 1% of the chains 

clustered in those data sets to eliminate many small clusters for common CDR 

lengths (such as H1-13). 

3. There must be at least 10 unique sequences in the EDIA=0.0 cluster. 

4. Exceptions to these rules were made in some cases if no clusters resulted but a 

minimum of 5 unique sequences was required in the EDIA=0.0 cluster (e.g. H2-

11-1). 

 



Examples of clusters that we kept and examples of those that were deleted (if they were 

present in the North clustering) or skipped (if they were not present in the North clustering) are 

shown in Tables 3 and 4 for the light and heavy chains. Each of the lengths shown (L1-11, L2-8, 

L3-9, L4-6, H1-13, H2-10, H3-12, H4-8) are the most common lengths for each of the 8 CDRs. 

The extensive data in these tables show that for most of the commonest clusters, the percentage 

of chains in the cluster rises as a function of the EDIA cutoff. For example, for H1-13-1, with no 

EDIA cutoff, the cluster represents 64% of the H1-13 CDRs but at a cutoff of 0.9, H1-13-1 

represents 86% of the chains in the data set. The percentage of chains that end up placed in 

noise by our grid-DBSCAN algorithm decreases as a function of increasing EDIA in most cases. 

For example, for L2-8, the percentage of chains in noise for the EDIA=0.0 data set is 20.3% while 

for the EDIA=0.9 data set, noise represents 4.4% of the data. The clusters listed that were deleted 

(if present in the North clustering) or skipped (if not present) generally show flat or decreasing 

representation as EDIA increases. The reason for not including them in the final list of clusters is 

given in the second column, indicating whether it is either missing clusters at higher EDIA, 

insufficient chains at EDIA=0.0 or EDIA=0.7, and/or insufficient unique sequences at EDIA=0.0. 

 

Final clusters  

After applying the rules described above, Ramachandran maps for the clusters resulting 

from DBSCAN at a cutoff of EDIA=0.0 are shown in Figure 6 and logos for their sequence profiles 

and Ramachandran regions are shown in Figure 7. The EDIA distributions for each extant cluster 

follow in Figure 8. As shown in Figure 7, as expected, the L region of the Ramachandran map is 

dominated by Gly, Asn, Asp, and Ser, while the E region is mostly restricted to Gly. Pro is 

restricted to the A and B regions, but also restricts the Ramachandran region of the preceding 

residue to the B region, since clashes occur in both the L and A regions with the C atom of trans 

Pro or the C atom in cis-Pro (Ting et al. 2010). Other correlations are evident and can be 

analyzed further. 

Since the EDIA=0.0 clustering did not include NMR structures or X-ray or EM structures 

of resolution worse than 3.5 Å, we need a method to assign the remaining CDRs to our clusters. 

Such a method can be used to update our clusters periodically. To be consistent with density-

based clustering, which is based on the number of neighbors of each point within a certain 

distance, we applied a nearest-neighbor approach (Benzécri 1982). We used the EDIA=0.0 

clusters as “ground truth” and assigned each CDR to a cluster if it had a nearest neighbor in the 

ground truth set (but not from the same PDB entry) within a distance of 40° using the maximum 

dihedral angle metric. For large clusters, we limited the number of ground truth members to 1000 



to speed the calculations. If no member of a ground truth cluster was within 40°, the CDR is 

assigned to noise (denoted with an asterisk, e.g. H1-13-*). Thus each CDR in a cluster has all of 

its backbone dihedral angles () less than 40° to a member of the ground truth set. As 

mentioned above, averaging dihedral angle differences can place CDRs with a peptide flip relative 

to the centroid if the cutoff for the average dihedral is too large (we previously used 40° for this 

cutoff). The maximum dihedral metric avoids this problem, and is a much stricter criterion than 

the average dihedral.  

The resulting clusters are presented in Tables 5 and 6 for the CDRs of the heavy and light 

chains respectively. In total, there are 73 clusters across the 8 CDR loops. For the H1, H2, L1, 

L2, and L3, for which we had 72 clusters in 2011, we now have 52 clusters, of which 16 are new 

and 36 are the same as defined in North et al. The new clusters are denoted in blue type in Tables 

5 and 6. The retired clusters are denoted in red in Table 1. The total numbers of clusters in the 

final set for each CDR are as follows: H1 (8); H2 (8); H3 (13); H4 (3); L1 (17); L2 (3); L3 (17); L4 

(4).  

 

Clusters related to each other by peptide flips 

We identified all of the clusters that are related to each other by a peptide flip. Table 7 

summarizes these clusters, listing which clusters are related, what their Ramachandran strings 

are, and what the peptide flip type is. In principle there are 8 different flip types: AA  BL; AB  

BE; AL  BA; AE  BB;  EA  LL; EB  LE; EL  LA; EE  LB, since in first position a change 

of  by 180° results in AB or EL and at second position a change of  by 180° results in A  

L or B  E.  For example, L1-11-1 and L1-11-2 are related by an EA→LL flip, due to hydrogen 

bonding when the last residue of the L4 loop is Tyr (L1-11-2) instead of Phe (L1-11-1). This has 

been well known since the 1990s (Al-Lazikani et al. 1997). The two H1-15 clusters represent a 

peptide flip from BL→AA at the 10th and 11th residue position within H1. The L3-9, largest cluster, 

L3-9-cis7-1 is related to cluster L3-cis7-2 via an AB →BE flip at positions 4-5. Several examples 

are shown in Figure 9. 

 

Updated website 

 The PyIgClassify website has been updated with the new data covering the PDB as of 

August 31, 2022. The site is located at http://dunbrack2.fccc.edu/PyIgClassify2. The download 

data are available under a CC-BY-NC license. Commercial users should contact the authors. The 

download data include: 

1) File: “pyig_cdr_data.txt” which contains one line per CDR, including PDB 

http://dunbrack2.fccc.edu/PyIgClassify2


information, cluster and distance values, sequence, Ramachandran string, germline 

assignment of the framework and the CDR (which may be different if the antibody is 

humanized) and their sequence identities, and the sequence of the CDR in the germline. 

2) File: “pyig_domain_data.txt” which contains one line per variable domain, including 

the same information but for all four CDRs. 

3) File: “pyig_mmcif.tar.gz”, a tar-gzipped file of mmCIF files for all variable domains in 

the PDB renumbered according to the modified AHo scheme. 

4) File: “pyig_cluster_mmcif.tar.gz”, a tar-gzipped file of mmCIF files for all clusters 

separated into separate folders. Each file name includes the name of the cluster for ease 

of visualization in PyMol or Chimera (so that object names include the cluster identifier, 

for example: H1-13-1_1H_2J88H_model1.cif. 

5) File: “pyig_vhvl_mmcif.tar.gz”, a tar-gzipped file of mmCIF files for all VH/VL domain pairs 

in the pDB renumbered according to our modified AHo scheme. In each file, the “author 

chain ID” is either H or L for the heavy and light chains respectively. 

 

Software for determining cluster membership for input antibody structures will be made 

available in the near future. The current website allows the user to submit a structure for cluster 

determination using the average dihedral metric we used previously and a strict 20° cutoff (instead 

of the 40° we used in the original PyIgClassify website). A new website with enhanced 

functionality is in preparation. 

 

Discussion 

Following selection of the final list of canonical clusters, we have now established a new 

classification of canonical conformations of antibody CDRs that is rigorously validated by electron 

density calculations and sufficient sequence representation in the PDB. Many clusters from North 

et al. are now obsolete, since they represent either too few sequences or poor electron density at 

specific residues indicating likely misfitting of electron density, usually in relation to the largest 

clusters. 

We have performed assignments of IMGT germlines to the framework and CDR 

sequences for all antibodies in the PDB. These data are provided in the download files on the 

website, and may be used to establish relationships of the germline sequences and their common 

somatic mutations with their observed structures in antibodies. This analysis is complicated by 

the presence of somatic mutations and will be provided at a later date. 

As deep learning approaches advance for both antibody structure, comparisons of 



predicted structures with experimental structures can be analyzed with regard to whether they 

reproduce the sequence-structure relationships observed in the canonical clusters of CDRs 

rigorously derived from PDB data. As computational antibody design methods mature, it will be 

useful to determine whether structures are being designed that mimic naturally encoded 

antibodies from the germline (or their somatic mutations) or whether new conformations are being 

designed and observed in the designed structures. With our new clustering, such inferences are 

put on a firmer statistical footing, which may help in further development of antibody design. 

 

Methods 

Sequences and structure files 

We followed the methods described in Adolf-Bryfogle et al. (Adolf-Bryfogle et al. 2015) to 

identify antibody variable domains in the PDB and to renumber the files according to the modified 

Honegger-Plückthun numbering scheme we used previously. The AHo scheme differs from IMGT 

by adding two numbers to residues after CDR1. We developed new HMMs for the heavy-chain, 

lambda-light-chain, and kappa-light-chain variable domains from structures in the PDB to improve 

the accuracy of identification of CDR segments and framework regions. Some unusual CDRs or 

antibodies with framework insertions were misaligned with our previous HMMs. This occurred 

particularly for bovine antibodies, which have unusually long CDR H3s.  In addition, we produced 

new HMMs for the alpha, beta, gamma, and delta chain variable domains of T-cell receptors to 

distinguish these domains from antibody light-chain domains. We searched PDB sequences (from 

out PISCES server, http://dunbrack.fccc.edu/pisces/download/pdbaa) (Wang and Dunbrack 

2003, Wang and Dunbrack 2005) with all seven HMMs using hmmsearch (Eddy 2009). Most 

domains appear in more than one HMM output file. The largest score for each domain was 

identified among the HMM output files. If this score was over 80.0, then the domain was assigned 

to that type of variable domain. This cutoff appropriately distinguishes true antibody domains from 

other V-type immunoglobulin domains in the PDB (e.g., CD4, CD8). An additional HMM (labeled 

“P”) was developed for some light-chain sequences that were otherwise misaligned by the kappa 

HMM. 

Variable domain coordinates were extracted from the mmCIF format files from the PDB, 

and renumbered according to the HMM alignment produced with hmmsearch. Each domain was 

placed in a separate file; all chains in all entries were processed in this way. The domains are 

labeled with a “datatag” consisting of the numbered domain, the HMM type, and then the PDB 

entry and chain ID. For example, the light and heavy chain domains from PDB entry 2J88 are 

labeled 1K_2J88L and 2H_2J88H respectively. To account for multiple models in NMR structures, 



the model numbers are attached to the data tags and filenames, e.g., 1K_2J88L_1 and 

1K_2J88L_model1.cif, respectively. Any CDR structures that had breaks in the backbone 

polypeptide chain or missing coordinates were identified, and subsequently discarded from the 

post-clustering analysis. 

The renumbered mmCIF files are available for download from the PyIgClassify website.  

 

Maximum dihedral angle metric 

The work in North et al. did not use the RMSD calculation as a metric for comparing two 

loop conformations, but instead used a metric based on dihedral angles. Martin and Thornton 

previously clustered antibody CDRs based on dihedral angles (Martin and Thornton, 1996), but 

North et al. calculated the difference between two corresponding dihedral angles with a formula 

taken from the field of angular statistics that accounts for the periodicity of torsion angles (Mardia 

and Jupp 2000). Specifically, for each residue in two loops being compared, North et al. averaged 

the following angular distance metric to compare the dihedral angles of corresponding amino 

acids between two different CDR loops: 

𝑑 = 2(1 − cos(∆𝜃)) 

where θ is one of the protein backbone dihedral angles , . The data were presorted by their 

pattern of cis and trans residues, so that or  did not need to be part of the average. 

For clustering using DBSCAN, instead of the average dihedral metric, we use the 

maximum value of d between two different CDRs of equal length and take that as the clustering 

metric to compare two loops: 

𝐷𝑖 ,𝑗 = 𝑀𝑎𝑥(𝑑𝑖,𝑛,𝑗,𝑚) 

where i and j represent two loops of the same length being compared, and n and m represent 

corresponding dihedrals between those two loops. The maximum is taken over the , , and  

dihedral angles, so presorting by cis-trans pattern is unnecessary. The maximum dihedral metric 

is much stricter than the average dihedral metric, because it is sensitive to differences at a single 

residue, whereas averaging d over all residues will tend to balance out small differences at 

individual residues in favor of other residues being similar on average. 

 

Clustering with DBSCAN over a grid of its parameters 

There are dozens of published clustering algorithms, some developed for very specific 

applications, while others are quite general and can be applied to a variety of scientific problems 

(Xu and Tian, 2015). The work in North et al. used the affinity propagation clustering algorithm 

(Wang et al., 2008), which was state-of-the-art at the time of publishing in 2011. This clustering 



algorithm defines clusters without needing to specify the number of clusters beforehand, but it 

does not account for noise points, which can distort the clusters. DBSCAN (Ester et al., 1996) is 

a density-based clustering algorithm that defines clusters by separating data points within high 

density separated by low density. A primary feature of DBSCAN is that it explicitly accounts for 

noise points, and collects them into a separate collection of data points. Noise points are points 

that do not lie anywhere near any of the defined clusters. 

DBSCAN is a natural choice for this problem due to its robust ability to define well-resolved 

clusters, as well as the automatic detection of outlier data points, which are prevalent within the 

antibody CDR dataset. Outlier structures are mostly due to either unusual structures that have 

highly divergent sequence from rare germlines or synthetic antibodies, or errors in structure 

determination resulting in structures far from the canonical clusters. 

 With the selection of DBSCAN as the clustering algorithm, the selection of parameters for 

DBSCAN is key to generating a desirable set of clusters. DBSCAN requires two main parameters 

to run the algorithm, MinPts and . The algorithm is as follows: 

 

1. Data points that have at least MinPts neighbors within a distance  are labeled as core 

points. 

2. Core points are connected by edges if they are within  of each other. 

3. Data points that are within at least  of a core point are labeled border points, and an edge 

is placed between the border point and its closest core point.  

4. Points which are not within  of core points are labeled as noise.  

5. The final cluster selections are the connected subgraphs of all of the core points and 

border points. 

  

When first using DBSCAN with the angular distance metric defined in North et al., it was 

clear there were some selections of MinPts and  resulted in a desirable clustering, while other 

selections either produced too much noise or resulted in clusters that were obvious merges of 

distinct conformations (e.g. distinct populations of different regions of the Ramachandran map for 

some residues). Some viable clusters with more diffuse density were observed at higher  values, 

but these   values sometimes merged clusters in undesirable ways. To address this issue, we 

developed an adaptation of DBSCAN that runs the algorithm over a grid of different values of 

MinPts and , and then combines the information over many different parameter sets to generate 

a final clustering. We call this adaptation Grid-DBSCAN (GDBSCAN). This is the method we used 



to cluster H4 and L4, and more information is provided in that paper (Kelow et al. 2020). 

In order to combine results from multiple parameters selections for the DBSCAN 

algorithm, we implemented a graph theory approach. First, we treat each cluster output from a 

run of DBSCAN at a particular selection of MinPts and  as a node on a graph. Second, we delete 

any clusters from each DBSCAN run that do not meet the criterion that the minimum distance 

between the furthest members of the cluster is below 150 at every dihedral. This technique 

removed clusters that merge different regions of the Ramachandran maps (e.g. A vs B, E vs L, A 

vs L, B vs E) whose centroids are roughly 180° apart in  or  or both. The remaining nodes on 

the graph now represent all dense clusters from all runs of DBSCAN over the entire grid of MinPts 

and . Clusters arising from different parameters may of course be related. These nodes are then 

connected by calculating the overlap of their cluster memberships using the Simpson similarity 

index given by the following equation: 

𝑆𝑖𝑚𝑝𝑠𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
|𝐴∩𝐵|

min(|𝐴|,|𝐵|)
  

The Simpson similarity index will be 0 if there is no overlap between two clusters, and 1 if there 

is perfect overlap between two clusters or if one cluster is a perfect subset of a larger cluster. If 

the Simpson index is higher than 0.9, then an edge is drawn between these two clusters from 

different runs of DBSCAN. The final set of clusters is the set of all connected subgraphs within 

this larger graph structure. 

Backbone clustering of the antibody CDRs was done using the following procedure. For 

each CDR-length, every CDR structure was included in the clustering set, and the grid for 

DBSCAN was set to 0.1 to 1.0, in steps of 0.1 for the parameter , and 5 to 20 in steps of 1 for 

MinPts. Some CDR lengths required a higher range of MinPts (up to 50 or 100), because of the 

large number of points available (L2-8, H4-8, L4-6). 

 

Electron density fit for individual atoms to support backbone clustering 

Since the North clustering, strategies for handling quality assessment of protein structures 

in the PDB have become more robust (Fährrolfes et al. 2017, Meyder et al. 2017, Liebschner et 

al. 2019). Electron density support for individual atoms, or EDIA, was introduced in 2017 (Meyder 

et al. 2017). EDIA calculates the fit of the coordinates of individual atoms to their electron density 

in a spherical region around the atom and accounts for both positive and negative density in the 

electron density difference maps. Using EDIA presents an alternative to B-factor cutoffs or 

resolutions cutoffs, which are traditional data used to assess structure quality, and typically 

applied as a filter to cut out structures that do not meet a specific threshold. One primary concern 



with a resolution cutoff is that resolution is a value that summarizes the quality of the entire 

structure, but has no information on the scale of amino acid residues or atoms. On the other hand, 

B-factor does assess structure quality at the atomic level, but it is highly susceptible to errors 

during the structure determination and structure refinement step, and oftentimes correlates with 

non-quality related factors such as protein dynamics and crystal contacts (Schlessinger et al. 

2006, Shapovalov and Dunbrack 2007, Yang et al. 2016). This makes the use of B-factor in the 

evaluation of protein crystal structure quality a less attractive option compared to EDIA. The EDIA 

data were downloaded from the ProteinsPlus webserver (Fährrolfes et al. 2017).  

 

Peptide flips from mis-solved residues within protein structures 

Within segments of protein without regular secondary structure, a common phenomenon 

is an event called peptide plane flipping, where the backbone atoms of the protein backbone 

peptide plane configure in such a way that the carbonyl oxygen and backbone nitrogen are flipped 

180 relative to a non-flipped counterpart (Hayward 2001, Touw et al. 2015). Peptide plane 

flipping is thought to have a role in protein conformational dynamics, but also are prevalent 

features in mis-solved residues. This may occur at low resolution when the two states may be 

difficult to distinguish, or due to molecular replacement with an incorrectly modeled structure. 

Peptide flips are determined by the co-dependency of the Ramachandran conformations of 

adjacent residues, where the  conformation of residue i is highly dependent on the  

conformation of the i+1 residue. Given the importance of the backbone conformation in backbone 

clustering analysis, the opportunity to systematically identify features of mis-solved protein 

structures on the basis of EDIA calculations for each CDR atom, and the sensitivity of the 

DBSCAN clustering protocol to pick up minute differences at single dihedral resolution, we applied 

an analysis of protein backbone flips to structures within the CDR set to identify clusters that are 

related to each other by peptide flips, and relating the peptide flip feature to errors in protein 

structure determination. 

To identify clusters that are related by peptide flips of the protein backbone, we started by 

calculating the average dihedral angle for each residue within each cluster of CDR structures. we 

calculate the average dihedral using the following equation for averaging torsional angles, which 

takes into account periodicity at 360: 

𝐴𝑣𝑔(𝐴) =  𝑎𝑡𝑎𝑛2 (
1

𝑛
∑ sin 𝑎𝑗

𝑛

𝑗=1

,
1

𝑛
∑ cos 𝑎𝑗

𝑛

𝑗=1

) 

Following the calculation of the average dihedral at each residue within the CDR, we 



identify clusters that are related by peptide flips by considering sets of two neighboring residues 

within the CDR sequentially at corresponding residues between two loops. First we check that 

the  and  angles of each residue before and after the residue in question are within 40 of each 

other in order to ensure that the motions observation between the two residues are related to 

peptide flipping and not natural backbone motion. Next, for the two residues being compared 

between two loops, we check to see if the difference in  of residue i within loop j is greater than 

100, and the difference in  of residue i+1 is within loop k is greater than 100. If all of the 

aforementioned criteria are met, position i is labeled as a flipped positions between the two loops, 

and the Ramachandran type for each of the two residues is labeled to capture the flip type. Flips 

between two clusters identified in this way were observed in PyMol and some pairs were in 

conformations that are more distinct than peptide flips and were skipped. 
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Figure 1. Minimum EDIA values over backbone atoms for individual residues in the full CDR data set vs resolution. The red line 
represents a Loess regression of the EDIA values. 
  



 
 
Figure 2. EDIA distributions for stable clusters (left column) and unstable clusters (right column). Red arrows in the right column 
indicate low electron density positions usually associated with incorrectly modeled peptide flips relative to the cluster in the left 
column. Clusters in the right column contain peptide flips relative to the much larger clusters in the left column. First row: H1-13-1 
(Ramachandran string BBBLBBAAABBBB) à H1-13-2 (BBAABBAAABBBB. Second row: H2-10-4 (BBBBLLABBB) à H2-10-7 
(BBBBEAABBB). Third row: L2-8-5 (ABAABBBB) is a peptide flip from L2-8-4 (BEAABBBB)  (not shown). Fourth row: L3-8-1 
(BBAABEBB) à L3-8-2 (BBABEBBB).   



 
 
 
 
 
 

 
Figure 3. Electron density for representatives of North clusters H1-13-1 (left) and H1-13-2 (right), showing low electron density at 
positions 3 and 4 in H1-13-2 (an BLàAA peptide flip, incorrectly modeled in most North cluster H1-13-2 structures). 
  

   Bad DBSCAN Cluster  Good North Cluster      Bad North Cluster                

A
verage E

D
IA

 S
core 

24 25 26 27 28 29 38 39 40 41 42 



 

 
 
Figure 4. Ramachandran plots for DBSCAN clustering for CDR L3-8 at EDIA cutoff values of 0.0, 0.4, and 0.7. The Ramachandran 
strings for each cluster are shown at left (A=alpha region; B=beta region; L=left-handed region; E=epsilon region (lower right and far 
upper right region of Ramachandran maps. The borders of each region are shown in thin gray lines in each plot. The cluster names 
are shown at right. L3-8-1 is a preserved North cluster and L3-8-2 is deleted from the new clustering. The fifth cluster at EDIA=0.0 is 
not maintained at higher EDIA cutoffs and is skipped in the new clustering. To maintain compatibility with the North clustering, the 
name L3-8-2 is retired and the new clusters are given previously unused names, L3-8-3 (orange) and L3-8-4 (green). 
  



 

 
Figure 5. EDIA distributions for all 5 clusters determined from DBSCAN applied to L3-8 EDIA=0.0 data (no cutoff) plus the noise data. 
The L3-8-2 (North) cluster is not observed in data with EDIA cutoff higher than 0.5. 

  



 
Figure 6. Ramachandran plots for all CDR clusters in the 2022 clustering. The light-gray grid lines are at f and y at -90°, 0°, 
and +90°. Cluster names are backwards compatible with the North et al. clustering. Any previous cluster name that is no 
longer has been “retired.” Any new clusters have been given names that have not been previously used in the North et al. 
clustering. 

 
 

  



Figure 6, continued. 
 

 

 
  



Figure 6, continued. 
 

 
 

 
  



Figure 6, continued. 
 

 
  



Figure 6, continued. 
 
 
 

 
  



Figure 7. Sequence logos and Ramachandran region logos for the 2022 clusters. For the Ramachandran regions, “A” is the alpha helix 
region (f<0°, -100° < y ≤ 50°); B is the beta sheet region (f<0°, y>50° or y≤ -100°). L is the left-handed helical region (left-handed 
helices do not exist but the name has stuck: f≥0°, -50° < y ≤ 100°). E is the “epsilon region” or  (f≥0°, y>100° or y≤ -50°). 
 

 
  



Figure 7, continued. 
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Figure 7, continued. 

  



Figure 8. EDIA distributions for each cluster. Each y-axis is on the same scale. 
 

  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 8, continued. 

 
  



Figure 8, continued. 

  



Figure 8, continued. 

  



Figure 9. Cluster pairs with peptide flips (change in y by 180° at residue N and change in f by 180° at residue N+1), without 
significant dihedral angle changes (>40°) at other positions. 
 

 
 



Table 1. North clusters in 2011 and 2022 
 

 

Cluster Chains 

(2011) 

Seqs 

(2011) 

Chains 

(2022) 

Seqs 

(2022) 

 Cluster Chains 

(2011) 

Seqs 

(2011) 

Chains 

(2022) 

Seqs 

(2022) 

H1-10-1 2 2 0 0  L1-10-1 20 16 263 61 

H1-12-1 1 1 0 0  L1-10-2 2 2 104 4 

H1-13-1 267 213 8117 1642  L1-11-1 76 57 2878 440 

H1-13-2 7 7 200 94  L1-11-2 55 37 897 194 

H1-13-3 5 5 248 99  L1-11-3 5 5 281 85 

H1-13-4 4 4 289 75  L1-12-1 5 5 449 89 

H1-13-5 4 4 227 63  L1-12-2 5 5 261 40 

H1-13-6 4 4 40 18  L1-12-3 2 2 61 11 

H1-13-7 3 3 116 35  L1-13-1 7 7 505 97 

H1-13-8 3 3 58 6  L1-13-2 4 4 137 16 

H1-13-9 3 3 16 7  L1-14-1 14 8 264 27 

H1-13-10 2 2 23 10  L1-14-2 4 4 350 74 

H1-13-11 2 2 8 3  L1-15-1 11 9 452 99 

H1-13-cis9-1 2 1 8 1  L1-15-2 2 2 13 7 

H1-14-1 11 7 193 48  L1-16-1 68 50 1029 192 

H1-15-1 9 7 324 93  L1-17-1 21 17 549 111 

H1-16-1 1 1 0 0  L2-8-1 290 159 8371 988 

H2-8-1 2 2 0 0  L2-8-2 9 8 482 148 

H2-9-1 77 57 2187 550  L2-8-3 3 2 53 13 

H2-9-2 2 2 16 6  L2-8-4 2 2 401 99 

H2-9-3 2 2 129 25  L2-8-5 2 2 295 76 

H2-10-1 155 131 4150 1020  L2-12-1 2 1 13 6 

H2-10-2 42 40 2528 612  L2-12-2 2 1 57 11 

H2-10-3 11 9 234 77  L3-7-1 2 2 0 0 

H2-10-4 7 7 280 34  L3-8-1 15 13 335 74 

H2-10-5 3 2 111 38  L3-8-2 4 4 25 16 

H2-10-6 3 3 304 93  L3-8-cis6-1 3 2 5 3 

H2-10-7 2 2 12 8  L3-9-1 22 17 347 69 

H2-10-8 2 2 25 13  L3-9-2 12 12 587 167 

H2-10-9 2 2 37 19  L3-9-cis6-1 1 1 5 2 

H2-12-1 26 22 488 95  L3-9-cis7-1 219 182 4678 907 

H2-15-1 1 1 0 0  L3-9-cis7-2 8 7 65 25 

      L3-10-1 6 5 216 53 

      L3-10-cis7and8-1 1 1 54 23 

      L3-10-cis8-1 2 2 2 1 

      L3-11-1 9 9 501 136 

      L3-11-cis7-1 1 1 61 3 

      L3-12-1 1 1 0 0 

      L3-13-1 3 2 21 6 
 
 
 
 
CDR clusters which have been deleted either because of low electron density and/or too few sequences are shown in red type. 
 



  



Table 2. Data sets for clustering at different minimum EDIA cutoff values. 
 

CDR EDIA 

Cutoff 

Number of 

ordered CDRs 

CDR EDIA 

Cutoff 

Number of 

ordered CDRs 

H1 0.0 8948 L1 0.0 7566 

H1 0.1 5026 L1 0.1 4504 

H1 0.2 4945 L1 0.2 4445 

H1 0.3 4781 L1 0.3 4293 

H1 0.4 4488 L1 0.4 4010 

H1 0.5 3843 L1 0.5 3425 

H1 0.6 2778 L1 0.6 2520 

H1 0.7 1743 L1 0.7 1598 

H1 0.8 1086 L1 0.8 956 

H1 0.9 482 L1 0.9 451 

H2 0.0 9065 L2 0.0 7631 

H2 0.1 5133 L2 0.1 4563 

H2 0.2 5085 L2 0.2 4552 

H2 0.3 4978 L2 0.3 4486 

H2 0.4 4726 L2 0.4 4326 

H2 0.5 4201 L2 0.5 3943 

H2 0.6 3228 L2 0.6 3245 

H2 0.7 2149 L2 0.7 2285 

H2 0.8 1313 L2 0.8 1441 

H2 0.9 666 L2 0.9 784 

H3 0.0 8771 L3 0.0 7634 

H3 0.1 4894 L3 0.1 4549 

H3 0.2 4782 L3 0.2 4506 

H3 0.3 4609 L3 0.3 4403 

H3 0.4 4275 L3 0.4 4156 

H3 0.5 3581 L3 0.5 3645 

H3 0.6 2614 L3 0.6 2812 

H3 0.7 1728 L3 0.7 1878 

H3 0.8 1078 L3 0.8 1200 

H3 0.9 547 L3 0.9 664 

H4 0.0 9015 L4 0.0 7601 

H4 0.1 5101 L4 0.1 4540 

H4 0.2 5056 L4 0.2 4515 

H4 0.3 4966 L4 0.3 4451 

H4 0.4 4792 L4 0.4 4304 

H4 0.5 4352 L4 0.5 3950 

H4 0.6 3494 L4 0.6 3250 

H4 0.7 2379 L4 0.7 2240 

H4 0.8 1386 L4 0.8 1261 

H4 0.9 606 L4 0.9 528 
 
 
  



Table 3. Number of sequences, domains, and percentage of CDR lengths for selected light-chain 
clusters. 
 

Cluster Status EDIA Ntotal 

Chains 

(CDRlength) 

Nseq Ndomains %Chains 

(CDRlength) 

Nseq 

(Noise) 

Nchains 

(Noise) 

%Chains 

(Noise) 

L1-11-1 Keep 0.0 3402 351 1838 54.0 134 384 11.3  
0.1 1818 229 996 54.8 79 194 10.7  
0.2 1808 229 999 55.3 78 181 10.0  
0.3 1767 226 980 55.5 69 169 9.6  
0.4 1665 225 953 57.2 60 146 8.8  
0.5 1478 215 863 58.4 69 144 9.7  
0.6 1113 191 681 61.2 48 75 6.7  
0.7 738 153 471 63.8 30 49 6.6  
0.8 437 115 280 64.1 17 22 5.0  
0.9 216 75 141 65.3 21 22 10.2 

L1-11-a Skip  

 

(maxEDIA=0.3; 

Nseq<10 

0.0 3402 3 26 0.8 134 384 11.3  
0.1 1818 3 14 0.8 79 194 10.7  
0.2 1808 3 14 0.8 78 181 10.0  
0.3 1767 3 14 0.8 69 169 9.6 

L2-8-1 Keep 0.0 7555 782 5129 67.9 382 1533 20.3  
0.1 4500 591 3446 76.6 234 706 15.7  
0.2 4490 591 3442 76.7 232 703 15.7  
0.3 4430 590 3426 77.3 230 676 15.3  
0.4 4274 588 3367 78.8 212 620 14.5  
0.5 3896 579 3148 80.8 195 513 13.2  
0.6 3208 560 2831 88.3 99 180 5.6  
0.7 2266 484 2085 92.0 43 74 3.3  
0.8 1429 361 1310 91.7 54 75 5.3  
0.9 777 238 723 93.1 28 34 4.4 

L2-8-5 Delete  

 

(maxEDIA=0.4) 

0.0 7555 29 90 1.2 382 1533 20.3  
0.1 4500 13 37 0.8 234 706 15.7  
0.2 4490 14 37 0.8 232 703 15.7  
0.3 4430 12 32 0.7 230 676 15.3  
0.4 4274 11 23 0.5 212 620 14.5 

L3-9-cis7-1 Keep 0.0 5033 811 3553 70.6 245 525 10.4  
0.1 2766 547 2003 72.4 133 232 8.4  
0.2 2750 546 2000 72.7 132 228 8.3  
0.3 2695 536 1940 72.0 148 252 9.4  
0.4 2569 539 1899 73.9 113 193 7.5  
0.5 2292 521 1719 75.0 106 173 7.6  
0.6 1758 454 1342 76.3 94 133 7.6  
0.7 1157 364 910 78.7 60 74 6.4  
0.8 745 283 607 81.5 44 59 7.9  
0.9 426 187 335 78.6 51 61 14.3 

L3-9-cis7-3 Delete  

 

(%chains<1.0) 

0.0 5033 20 47 0.9 245 525 10.4  
0.1 2766 11 24 0.9 133 232 8.4  
0.2 2750 11 24 0.9 132 228 8.3  
0.3 2695 11 24 0.9 148 252 9.4  
0.4 2569 11 23 0.9 113 193 7.5  
0.5 2292 8 17 0.7 106 173 7.6  
0.6 1758 7 17 1.0 94 133 7.6  
0.7 1157 6 13 1.1 60 74 6.4 

L4-6-1 Keep 0.0 7464 80 4556 61.0 99 943 12.6  
0.1 4420 62 2504 56.7 68 501 11.3  
0.2 4397 62 2495 56.7 69 515 11.7  
0.3 4335 62 2474 57.1 67 461 10.6  
0.4 4190 61 2421 57.8 65 419 10.0  
0.5 3839 59 2245 58.5 61 356 9.3  
0.6 3154 55 1881 59.6 57 249 7.9  
0.7 2169 49 1335 61.6 43 98 4.5  
0.8 1220 42 752 61.6 21 40 3.3  
0.9 511 29 308 60.3 14 23 4.5 

L4-6-a Skip  

 

(maxEDIA=0.5; 

Nseq<10) 

0.0 7464 5 50 0.7 99 943 12.6  
0.1 4420 3 11 0.3 68 501 11.3  
0.2 4397 3 11 0.3 69 515 11.7  
0.3 4335 3 11 0.3 67 461 10.6  
0.4 4190 3 10 0.2 65 419 10.0  
0.5 3839 3 10 0.3 61 356 9.3 

 
 
  



Table 4. Number of sequences, domains, and percentage of CDR lengths for selected heavy-chain 
clusters. 
 

Cluster Status EDIA Ntotal 

Chains 

(CDRlength) 

Nseq Ndomains %Chains 

(CDRlength) 

Nseq 

(Noise) 

Nchains 

(Noise) 

%Chains 

(Noise) 

H1-13-1 Keep 0.0 8176 1253 5224 63.9 645 1529 18.7 

0.1 4552 880 3159 69.4 340 677 14.9 

0.2 4478 879 3134 70.0 329 638 14.3 

0.3 4333 877 3084 71.2 307 577 13.3 

0.4 4067 863 2941 72.3 290 533 13.1 

0.5 3491 821 2600 74.5 265 421 12.1 

0.6 2522 679 1926 76.4 202 273 10.8 

0.7 1595 504 1241 77.8 146 194 12.2 

0.8 994 378 799 80.4 104 144 14.5 

0.9 446 233 383 85.9 54 63 14.1 

H1-13-8 Delete  

 

(Nseq<10; 
%chains<1.0 at 

EDIA=0.7) 

0.0 8176 5 79 1.0 645 1529 18.7 

0.1 4552 2 44 1.0 340 677 14.9 

0.2 4478 2 44 1.0 329 638 14.3 

0.3 4333 2 41 1.0 307 577 13.3 

0.4 4067 2 31 0.8 290 533 13.1 

0.5 3491 2 25 0.7 265 421 12.1 

0.6 2522 2 17 0.7 202 273 10.8 

0.7 1595 2 12 0.8 146 194 12.2 

H2-10-1 Keep 0.0 6514 841 2947 45.2 372 816 12.5 

0.1 3615 566 1765 48.8 208 387 10.7 

0.2 3580 557 1736 48.5 214 401 11.2 

0.3 3507 559 1727 49.2 200 363 10.4 

0.4 3315 553 1638 49.4 179 320 9.7 

0.5 2915 526 1464 50.2 166 287 9.9 

0.6 2206 463 1154 52.3 114 186 8.4 

0.7 1423 351 760 53.4 77 108 7.6 

0.8 867 255 463 53.4 57 75 8.7 

0.9 432 144 228 52.8 51 63 14.6 

H2-10-5 Delete  

 

(%chains<1.0% 

at EDIA=0.7) 

0.0 6514 23 70 1.1 372 816 12.5 

0.1 3615 15 35 1.0 208 387 10.7 

0.2 3580 15 35 1.0 214 401 11.2 

0.3 3507 15 35 1.0 200 363 10.4 

0.4 3315 15 33 1.0 179 320 9.7 

0.5 2915 13 27 0.9 166 287 9.9 

0.6 2206 10 17 0.8 114 186 8.4 

0.7 1423 9 13 0.9 77 108 7.6 

0.8 867 6 10 1.2 57 75 8.7 

H3-12-1 Keep 0.0 1071 39 126 11.8 208 527 49.2 

0.1 631 29 89 14.1 141 331 52.5 

0.2 619 30 88 14.2 140 336 54.3 

0.3 600 30 86 14.3 139 322 53.7 

0.4 562 30 84 15.0 127 291 51.8 

0.5 480 29 77 16.0 119 244 50.8 

0.6 361 25 62 17.2 108 223 61.8 

0.7 247 23 47 19.0 86 154 62.4 

0.8 147 17 27 18.4 66 103 70.1 

0.9 77 10 14 18.2 45 63 81.8 

H3-12-

unnamed 

Delete  

 

(maxEDIA=0.5;  

Nseq<10 at 

EDIA=0.0) 

0.0 1071 4 20 1.9 208 527 49.2 

0.1 631 3 15 2.4 141 331 52.5 

0.2 619 3 15 2.4 140 336 54.3 

0.3 600 3 15 2.5 139 322 53.7 

0.4 562 3 15 2.7 127 291 51.8 

0.5 480 3 15 3.1 119 244 50.8 

H4-8-1 Keep 0.0 8882 793 8078 91.0 197 496 5.6 

0.1 4988 576 4634 92.9 96 182 3.7 

0.2 4944 575 4608 93.2 94 180 3.6 

0.3 4857 565 4498 92.6 108 222 4.6 

0.4 4687 560 4372 93.3 102 206 4.4 

0.5 4255 545 4000 94.0 102 175 4.1 

0.6 3420 497 3247 94.9 74 121 3.5 

0.7 2324 409 2237 96.3 41 57 2.5 

0.8 1343 300 1267 94.3 50 65 4.8 

0.9 580 183 554 95.5 19 26 4.5 

H4-8-

unnamed 

Skip  

 

(%chains<1.0%  

at EDIA=0.7) 

0.0 8882 40 99 1.1 197 496 5.6 

0.1 4988 23 58 1.2 96 182 3.7 

0.2 4944 23 58 1.2 94 180 3.6 

0.3 4857 23 53 1.1 108 222 4.6 

0.4 4687 20 42 0.9 102 206 4.4 

0.5 4255 15 32 0.8 102 175 4.1 

0.6 3420 12 24 0.7 74 121 3.5 

0.7 2324 7 13 0.6 41 57 2.5 

 
 
  



Table 5. Final 2022 heavy chain clusters for PyIgClassify2 
 
Cluster Num 

Chains 

Percent 

Chains 

PDB ConsSeq Num Uniq 

Seq 

Percent 

Seq 

Species Gn Loop Conformation Median 

Angle 

H1-13-1 7386 65.8 1A3LH aASGfTFssYwmH 1519 56.5 Al Ca Pa Ha Ch Hu 
Rb Ra La Ma Mo Bo 

H BBBLBBAAABBBB 10.3 

H1-13-3 115 1.0 5IMKB aASGRTFSSYaMG 42 1.6 Al Ca Hu La Mo H BBBEAAAAABBBB 17.2 

H1-13-4 233 2.1 4KK8C aaSGGtFsgYYWS 51 1.9 Al Ca Rb Hu Ra La 
Ma Mo 

H BBBLBBABLBBBB 10.5 

H1-13-5 181 1.6 7Z1AF AASGRTFSIYaMG 44 1.6 Al Ca Hu La H BBBEBAAABABBB 10.3 

H1-14-1 93 19.9 5VPLD TVtGYSITSdYaWN 27 23.5 Mo Hu H BBBLBBAAABEBBB 10.1 

H1-14-2 86 18.4 6P60C AVSGGSISssYyWS 28 24.3 Rb Hu Ra Ma Mo H BBBLBBAABBBBBB 15.8 

H1-15-1 172 32.6 1TJGH tFSGFSLSTSGMGVG 48 26.8 Mo Ma Hu H BBBLBBAABBLBBBB 9.6 

H1-15-2 132 25.0 6OELH tvSGDSiSssdyyWg 40 22.3 Mo Ma Hu H BBBLBBAABAABBBB 10.0 

H2-9-1 2133 81.5 7RK1D YIYYSGSTY 534 77.2 Al Ca Ha Ch Hu Rb 
Ra La Ma Mo Bo 

H BBBAALBBB 10.8 

H2-10-1 3989 44.3 6FFJA wInPgNGdTN 986 43.0 Al Ca Rb Hu Ch Ra 
La Ma Mo 

H BBBAAALBBB 11.5 

H2-10-2 2325 25.8 4ZYKH AISsdGssTY 572 24.9 Al Ca Ha Ch Hu Rb 
Ra La Ma Mo 

H BBBAALABBB 10.6 

H2-10-3 214 2.4 6B3KH EIyPGsGSTn 67 2.9 Al Ca Hu La Ma Mo H BBBBEALBBB 16.3 

H2-10-4 253 2.8 7W56E gISSGGgYty 25 1.1 Al Ch Hu Ra La Mo H BBBBLLABBB 10.9 

H2-10-6 243 2.7 6ZHDE WINPsGGsTy 71 3.1 Al Ca Rb Ch Hu La 
Ma Mo 

H BBBABLLBBB 14.2 

H2-11-1 29 22.7 7O4YH RTYYRSKWYNd 11 22.0 Hu H BBBBBLBBBBB 15.5 

H2-12-1 459 85.6 2R1YB rIRnkangYtTE 90 69.8 Al Hu Ra Mo H BBBBAAALLBBB 10.8 

H3-5-2 36 38.7 4WHTQ TRKDY 6 23.1 Ra Mo Hu H BAEAB 10.1 

H3-6-1 45 30.6 3U0WH ARGfDY 15 32.6 Ca Mo Hu H BBEAAB 15.7 

H3-6-2 28 19.0 4TRPH ArGFDY 12 26.1 La Mo Rb Hu H BBLLAB 10.1 

H3-7-1 74 33.3 2DQCH ArWdGDY 14 23.7 Ra Mo Hu H BBAALAB 15.5 

H3-8-2 38 14.1 5NH3H ARGgyfDY 14 18.9 Mo Rb Hu H BBEAALAB 11.5 

H3-9-2 44 9.2 6DWAB ARGYYGfDY 20 11.5 Ra Mo Hu H BBBAABBAB 11.9 

H3-10-1 85 14.9 1PG7H ARDGyGAfDY 27 14.0 Rb Hu La Mo H BBBBLLBBAB 16.3 

H3-10-2 50 8.8 4YNYA ARhrGnyFDY 19 9.8 Ha Hu Ra La Ma Mo H BBBBEABBAB 17.5 

H3-11-1 123 13.0 1PZ5B ARegYSgAFDy 43 15.0 Al Rb Hu Ra Mo H BBBBAALBBAB 11.7 

H3-12-1 132 9.1 1A4KB ARgdYYYGafDy 42 10.8 Ra Mo Hu H BBBBAAALBBAB 16.8 

H3-12-3 42 2.9 7LY0H ARgvYGTsyFDY 14 3.6 Ha Ra Mo Hu H BBBBBLBABBAB 17.4 

H3-13-2 95 8.4 4GW5D ARggsdYSywfdY 12 4.0 Mo Hu H BBBABAABABBAB 11.4 

H3-14-2 64 4.5 7SHZC ARelYYGGSwYFDv 13 4.0 Mo Hu H BBBBBBLLBBBBAB 10.1 

H4-6-1 76 82.6 6BA5B KTSTTV 9 60.0 Rb Hu H BBAABB 14.1 

H4-7-1 63 86.3 4ZTOI ktSSTTV 7 70.0 La Rb Hu H BABAABB 10.5 

H4-8-1 10892 90.4 4FQLH rDtSKNta 907 74.9 Al Ca Pa Ha Ch Hu 
Rb Ra La Ma Mo Bo 

H BBAAALBB 9.5 

        

Species abbreviations: Hu=Human, Ma=Macaque, Pa=Chimp, Bo=Cow, Mo=Mouse, Ra=Rat, Ha=Hamster, Rb=Rabbit, Al=Alpaca, 

Ca=Camel, La=Llama. The median angle is the average of  and  differences from the centroid of the cluster. It is a measure of 
dispersion of the structures within each cluster. New clusters are labeled in blue type. 
 

  



Table 6. Final 2022 light-chain clusters for PyIgClassify2 

Cluster Num 

Chains 

Percent 

Chains 

PDB ConsSeq Num Uniq 

Seq 

Percent 

Seq 

Species Gn Loop Conformation Median 

Angle 

L1-8-1 23 54.8 7A0YD SGsSyNyG 9 50.0 Ch Hu L BLBABBBB 17.6 

L1-10-1 252 58.7 1YQVL SASSSVSYMH 58 75.3 Mo Hu K BBABBBABBB 9.9 

L1-11-1 2554 51.2 4NHHK RASQsISsyLA 402 43.3 Pa Rb Hu Ra Ma Mo K BBABBAEABBB 7.7 

L1-11-2 771 15.5 6I1OL RASQDIsnYLA 166 17.9 Ha Rb Hu Ra Ma Mo K BBABBALLBBB 8.5 

L1-11-3 211 4.2 6A3WH gGDniGDKsVH 61 6.6 Ha Mo Ma Hu L BBBLAAABBBB 10.3 

L1-11-4 196 3.9 7MF7D SGDaLpKKYAY 57 6.1 Ha Ra Mo Hu L BBAAAAABBBB 10.2 

L1-12-1 399 44.6 6XE1L RASqSVSSSYLa 77 42.3 Mo Hu K BBABBBBAAABB 10.5 

L1-12-2 174 19.4 1RHHA RASQSVSSNYLA 27 14.8 La Mo Hu K BBABBBBLLBBB 11.0 

L1-13-1 431 52.4 4BUHA SGSSSNIGsNYVS 88 48.9 Hu Ma Mo Bo L BBBAAAAAABBBB 10.3 

L1-13-2 105 12.8 4YNYD TRSSGsIaSNYVq 16 8.9 Ra Ma Hu L BBABEBAAABBBB 14.5 

L1-13-3 59 7.2 5I8KL QSSQSVYNNNNLA 18 10.0 Rb Hu K BBABBBBLLABBB 8.3 

L1-14-1 225 23.4 1NC2A RSStGAVTtSNyAN 25 13.2 La Ra Mo Hu L BBAAEBBBAAALBB 10.1 

L1-14-2 292 30.4 7E7YD TGTSSDvGgYNYVS 65 34.2 La Ma Hu L BBBAAAAAABABBB 10.6 

L1-14-3 94 9.8 7N4JL TGSSSNIGAGYDVH 20 10.5 Hu L BBBAAAAAALBBBB 9.1 

L1-15-1 327 56.0 2XQYL RASeSVDYyGdSYMH 76 55.1 Ch Hu Ra Mo K BBABBABBLLBBBBB 9.5 

L1-16-1 904 79.4 2D03L RSSQSLVHSNGNTYLe 172 69.9 Hu Ra Ma Mo K BBABBABBAALBBBBB 9.3 

L1-17-1 438 70.6 6ANAL KSSQSLLySSNqKNYLA 99 69.7 Hu Ra La Ma Mo K BBABBABBAAALBBBBB 9.1 

L2-8-1 8065 76.8 6KR0D YdaSnrAS 971 66.1 Pa Ha Ch Hu Rb Ra 
La Ma Mo Bo 

K L BLLABBBB 8.7 

L2-8-4 352 3.4 5WCCL YgASnrPS 87 5.9 Rb Hu Ma Mo Bo K L BEAABBBB 17.3 

L2-12-2 45 59.2 1EORL KlNSDGShTkGD 11 50.0 Mo Ma Hu L BBBAALBBBBBB 16.8 

L3-5-1 217 91.2 4OLYL QqyEf 27 84.4 Mo Hu K L BBEAB 9.2 

L3-8-1 321 46.9 3O2DL qQYyNlWT 71 35.0 Ch Hu Ra Mo K BBAABEBB 9.2 

L3-8-3 127 18.6 5O1RL QQYYSSPT 39 19.2 Ra Mo Hu K BBAABBBB 12.3 

L3-8-4 53 7.7 7CQDM QQYdssPT 19 9.4 Ra Mo Hu K L BBBAABBB 18.2 

L3-9-1 169 2.5 7REWB QqWDSshwv 52 3.5 Ch Hu Ra Ma Mo K L BBBBLLBBB 11.0 

L3-9-2 530 7.7 4XBGK QQyystPYT 148 9.9 Hu Ra Ma Mo K BBAABABBB 14.1 

L3-9-3 148 2.2 6N35L QsydsSsvv 30 2.0 Hu Mo Bo K L BBBBAABBB 11.3 

L3-9-4 206 3.0 5XCTB ALWYSsHWV 28 1.9 Rb Ch Hu La Mo K L BBBBEABBB 12.5 

L3-9-cis7-1 4616 67.3 6HX4M QQyYsYPyT 897 59.7 Pa Ha Rb Hu Ra La 
Ma Mo 

K BBAABBbBB 9.7 

L3-9-cis7-2 59 0.9 5DFWH QHFWgTPRT 21 1.4 Mo Hu K BBABEBbBB 11.3 

L3-10-1 197 17.4 6CBJL sSYtSSsTwV 45 13.1 Bo Ma Ch Hu K L BBBBAALBBB 16.1 

L3-10-2 61 5.4 7E7YD cSYAGSstwV 21 6.1 Hu K L BBBAELLBBB 16.3 

L3-10-3 42 3.7 5FGBB QvWDSssdVV 19 5.5 Hu K L BBBBAAAEBB 10.5 

L3-10-cis78-1 51 4.5 3EYFC qQrTHwPPLT 21 6.1 Mo Hu K BBAABBbbBB 10.2 

L3-11-1 449 42.3 7RP2I QaWDSSlsgvV 123 41.6 Ch Hu Ma Mo Bo K L BBBBAAALBBB 10.9 

L3-11-2 59 5.6 7LY0L QStDSSGTYwV 21 7.1 Hu L BBBBAALABBB 11.2 

L3-13-2 12 13.8 4MA3L LGSYDCNsAEClA 5 19.2 Rb K BBBBBAAABBABB 13.8 

L4-6-1 6368 62.0 5I76C GSGTDf 97 27.6 Pa Ha Rb Hu Ch Ra 
La Ma Mo 

K L EBEABB 9.8 

L4-6-2 2531 24.7 3MUGA kSGTta 120 34.1 Ha Ch Hu Rb Ra La 
Ma Mo Bo 

K L BBEABB 12.0 

L4-6-3 364 3.5 6MV5L GSGTDf 30 8.5 Ch Hu Ra Ma Mo K L EBAABB 10.9 

L4-8-1 171 86.8 6W4YB KDASsNsG 11 78.6 Ra Ma Hu L BBAAALBB 9.8 



Table 7. Flips between clusters 
 

Cluster 1 Cluster2 Rama1 Rama2 Type Flip position 

H1-13-1 H1-13-4 BBBLBBAAABBBB BBBLBBABLBBBB AA→BL 8-9 

H1-15-1 H1-15-2 BBBLBBAABBLBBBB BBBLBBAABAABBBB BL→AA 10-11 

H2-10-1 H2-10-6 BBBAAALBBB BBBABLLBBB AA→BL 4-5 

H2-10-2 H2-10-4 BBBAALABBB BBBBLLABBB AA→BL 5-6 

H3-6-1 H3-6-1 BBEAAB BBLLAB EA→LL 3-4 

H3-10-1 H3-10-2 BBBBLLBBAB BBBBEABBAB LL→EA 5-6 

L1-11-1 L1-11-2 BBABBAEABBB BBABBALLBBB EA→LL 7-8 

L2-8-1 L2-8-4 BLLABBBB BEAABBBB LL→EA 2-3 

L3-9-1 L3-9-4 BBBBLLBBB BBBBEABBB LL→EA 5-6 

L3-9-cis7-1 L3-9-cis7-2 BBAABBbBB BBABEBbBB AB→BE 4-5 

 
 


